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LETTER TO THE EDITOR 

Boundary conditions and scaling functions of percolation 
models 

Chin-Kun Hut 
Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan 1 1  529 

Reaivad 9 August 195'4 

Abstract We use a histognun Monte Carlo simulation method to calculate the scaling functions 
of the existence probability Ep and the percolation probability P of the site percolation model 
on square lanices with free and periodic boundaiy conditions. We find thd different boundary 
conditions give quite different sealing functions near the critical region. However, they give 
the consistent critical point, critical exponents. and the thermodynamic or&r parameter from 
renormaliratiou-group calculations. Similar results are found for other percolation models, 
The implications of our calculated results for some theoretical problems of current interest 
are discussed. 

Finitesize scaling is impo&nt in both theoretical [1-5] and experimental [6] studies of 
critical phenomena. According to the theory of finitesize scaling [l-571, if the dependence 
of a physical quantity Q of a thermodynamic system on the parameter, t which vanishes 
at the critical point, may be written as Q(Z) - tu near the critical point, then for a finite 
system of linear dimension L at 1,  the corresponding quantity Q(L ,  t) may be Written as 

Q(L ,  t )  L-LLYiF(rLYc) (1) 
where y, (U-') is the thermal scaling power and F ( x )  ( x  = ILY~) is called a scaling function. 
When finite-size scaling is valid, the scaled data Q(L,  t)/L-'Y' for different values of L 
fall on the same curve, represented by F ( x ) ,  if they are plotted as a function of the scaling 
variable x .  Thus, it is important to know the behaviour of the scaling function under 
various conditions. In thii letter, we briefly report our finding for the effect of boundary 
conditions on the scaling functions of percolation problems which have been of much 
interest in recent decades [7-151. Using the histogram Monte Carlo simulation method 
developed by Hu [16,17], we calculate the existence probability Ep and the percoIation 
probability P of the site percolation model on the square lattices with free and periodic 
boundary conditions and with various linear dimensions. For a given boundary condition, 
the calculated Ep and P have very good scaling behaviour. We find that the scaling 
functions for the periodic boundary condition and the free boundary condition are quite 
different near the critical region. However, when we apply the large cell-to-cell Monte 
Carlo renormalization-group method [ 16-18] to calculate critical point, critical exponents, 
and the thermodynamic order parameter, we find that different boundary conditions give 
consistent results. The implications of our calculated results on some theoretical problems 
of current interest will be discussed at the end of this letter. 
t Email addresses: huck@phys.sinicaedu.tw and hu@cmt.harvard.edu 
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In the site random percolation model (SRPM) on a d-dimensional lattice G of N sites, 
each site of G is occupied with a probability p ,  where 0 < p < 1. The probability weight 
for the appearance of a subgraph G' of u(G') occupied sites is given by 

(2) 
The cluster which extends from one side of G to the opposite side of G is called a percolating 
cluster. The subgraph whose largest cluster is percolating is called a percolating subgraph 
and will be denoted by Gb. The subgraph whose largest cluster is not percolating is called 
a non-percolating subgraph and will be denoted by G;. The existence probability Ep(G, p )  
and the percolation probability P(G, p )  for the SWM on G are given by 

z(G', p )  = p"""(1 - p )  N-v(G'), 

Ep(G, P) = z(G6, P) (3) 

where n(GL, p )  is defined by (2). The sums in (3) and (4) are over all Gk of G; N*(G') 
is the total number of lattice sites in the largest cluster of G. The definitions of G,, Gf, 
and N*(G') in the present paper are different from the corresponding definitions of [16,17]. 
The new definitions allow us to save a lot of computing time and therefore we may do the 
calculations for larger systems. 

We choose a sequence of site probabilities of increasing magnitudes: 0 < p ,  e pz  < 
m .. . e p w  < 1. For a given p j ,  1 < j < w ,  we generate N R  different subgraphs 
G'. The data obtained from WNK different G' are then used to construct three arrays of 
length N with elements Np(u), &(U), and Npp(u), 0 < U < N ,  which are, respectively, the 
total numbers of generated percolating subgraphs with U occupied sites, the total number 
of generated nor.-percolating subgraphs with v occupied sites, and the sum of N*(G')  over 
subgraphs with U occupied sites. In the large number of simulations, we expect that the 
total number of percolating subgraphs with U occupied sites, Nrp(u), and the total number 
of non-percolating subgraphs with U occupied sites, &(U), should be proportional to N p ( u )  
and Nr(u) with the same proportional constant C(u), which may be determined from the 
following equation: 

(5) 
where C: = N ! / ( N  - u ) ! u ! .  The existence probability E, and the percolation probability 
P at any value of the site occupation probability p may be calculated from the following 
equations: 

c(U)[Np(U) + Nf(U)] = Nlp(U) + N d ( V )  = cf. 

We have used (6) and (7) to calculate the existence probability Ep(G, p )  and the 
percolation probabihty P(G, p )  of the site random percolation model on the square lattices 
with linear dimensions L = 32,64128,256 and 5 12. We consider bcth the free and periodic 
boundary conditions. Qpical calculated results of E,  and P are shown in figures l(a) and 
(b) ,  respectively. For the SRPM on the square lattice, it is generally believed that the exnct 
yt and yh are 0.75 and 1.8958. ... 171, and Ziff [14], respectively, have done extensive 
Monte Carlo simulation on a 1024 x 1024 lattice to obtain pc = 0.5927460 f 0.0000005. 



Letter to the Editor mi5 

P 

P 

Figure 1. The calculated results for the site random percolation model on square lattices with 
linear dimensions L 3 2  64, 128,256, and 512, where the (w, Nd values are (420.9 x IOs), 
(389.9 x IO5). (369.9 x I@), (369.1.8 x 105). and (420.1 x IO')). respectively, for the free 
boundary condition. For the periodic boundary condition, 7 x IO' is replaced by 5.6 x lo'. 
( 0 )  En 85 a function of p ,  For both (a) and (b) he broken vertical line inters& the p-axis 
at pE = 0.5927460. At p F ,  the lower five full cnrves are for the free boundary condition and 
the upper five dotted curves are for the periodic boundary mdition. (b) P as a function of p .  
At pE. the lower five full c w e s  are for the free boundary condition and the upper five dotfed 
curves M for the peziodic boundary condition. 

Using the exact value of yt [7] and the numerical value of pc  [14], we have plotted 
the data for E,(G, p )  represented in figure l(a) as a function of x = ( p  - pC)Lx in 
figure 2(a). Since the critical exponent of Ep is zero [7], we need not divide Ep by 



L816 Letter to the Editor 

0.0 ::: ; 
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 

X 
1.6 I .r____ 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 .O 

X 

FipreZ (~)ThecalculatedE~f~~thesquarelatticeasafunction ofx. wherex = ( p - p e ) L > .  
The function is the scaling function F(G, x ) .  ( 6 )  The calculated PJL-PY, for the square lattice 
as e function of x, where x = ( p  - pdL-n .  "he function is the scaling function S(G, x). 

the factor L-"fi, to obtain the scaling function for Ep, which is denoted by F(G, x ) .  It is 
obvious that F(G, 0) = Ep(G. pc) .  Using the same values of yt and pc ,  we have also plotted 
P ( G ,  p ,  q)/L-Bn for P(G.  p )  presented in figure l(b) as a function of x = ( p  - p.)L" in 
figure 2(b). The scaling function for P(G. p )  is denoted by S(G, x ) .  

Figures 2@) and (b) show that Ep and P have nice finitesize scaling behaviour, 
However, the scaling functions for the periodic and the free boundary conditions are quite 
different. As L approaches very large values, F(G,  0) which equals E,(G. p.) approaches 
0.5 for the free boundary condition and approaches 0.93 for the periodic boundary condition. 
The value 0.5 is consistent with the result of conformal field theory [14,23]. 
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In the previous calculations, a cluster is percolating if it percolates in a given direction, 
i.e. from top to bottom. We have also studied the case where a cluster is percolating only if 
it percolates in two directions, i.e. from top to bottom and from left to right [19]. We have 
found that such a definition gives different scaling functions. For the periodic boundary 
condition and the free boundary conditions, F(G, 0), i.e. E,(G, pc). equals 0.89 and 0.33, 
respectively, which are smaller than the corresponding values for one direaion percolation. 

The percolation renormalization-group (PRO) transformation from lattice GI of linear 
dimension L1 to lattice Gz of linear dimension Lz ,  where LI > Lz, is given by the equation 
[16,171 

(8) 
which gives the renormaliied site probability p' as a function of p .  The fixed point of (8) 
gives the critical point pc. The thermal scaling power yt and the field scaling power yh, 
which is equal to the fractal dimension D of the percolating cluster at pc [8,20], may be 
obtained from the equations 

Ep(Ga, P') = E~(GI 9 P )  

We have used the above equations to calculate the critical point pc, the thermal scaling 
power yt, and the field scaling power yh for the SRPM on the square lattice. For the free 
boundary condition, we use w = 420 and NR = 70000 for LI = 512, and w = 369 and 
NR = 180000 for LZ = 256 to obtain pdsq) = 0.592(8), yt = 0.7(5), and yh = 1.89(3). 
For the periodic boundary condition, we use w = 420 and NR = 56000 for Lt = 512, and 
w = 369 and NR = 180000 for LZ = 256 to obtain p,(sq) = 0.592(8), yt = 0.7(5), and 
yh = 1.89(6): The two results are consistent. Our numerical results are very close to the 
exact results [7] or the numerical results of Ziff [14]. 

With each site of the lattice we may associate an adimensional 'magnetic moment' 
mo and consider the renormalization of ma under the PRO transformation to give the 
renormalized 'magnetic moment' mb [21,221 

mkP(G2, p',q)Li = moP(G1, p ,  q)L f  (10) 
which means that the total 'magnetization' is preserved after the PRG transformation. After a 
series of PRG transformations, we have a series of renormaliied site probability p, p( ' ) (=  p'), 

(") p@). .... p(") and the renormalized magnetic moments mo, m;), mf), , .., m, . 
The thermodynamic percolation probability of the original systems, P&), may be related 
to the thermodynamic percolation probability of the nth transformed system, P,(p(")), by 
the equation 

for p > pc with h = Ll/L2. In the traditional small-cell RG transformation (RGT) [21, 221, 
one iterates the RGTS until p(") approaches the 'lower-temperature' fixed point pc = 1 then 
Pm(p(")) of (11) is given by 1 .  However, in the large cell-to-cell RGTs considered here, 
one need only iterate the RGTs until the correlation length of the nth transformed system is 
smaller than the linear dimensions of the transformed cell. In such a case, the transformed 
cell may well represent the thermodynamic systems and we may use P(G2, p'")) to represent 
P,(p(")) of (11) and obtain [I81 
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Figurr 3. The calculated themdynamic order parameters P,(G,p)  of the site random 
percolation model on the square Imice. The full and doued curves are for the free and periodic 
boundary conditions, respectively, 

We have used (12) to calculate the thermodynamic order parameter P, for the SRPM 
with the free and periodic boundary conditions, which arc shown by full and dotted curves 
in figure 3. respectively. The two calculated results are consistent. 

From our calculated results, we may discuss some theoretical problems of current 
interest. Ziff 1141 called the existence probability Ep in our papers [16,17.20] the spanning 
probability and denoted it by R L ( ~ ) .  In a recent letter 1141, Ziff used extensive Monte 
Carlo simulations to study R L ( ~ )  for a site random percolation model on a square lattice 
with the free boundary condition. He found that R'(p) -+ 4 as L -+ CO in agreement with 
Cardy's recent result [23] but not with renormalization-group (RG) theory. He pointed out 
that the RG transformation (ROT) p' = R'(p) cannot give the expected result Rr(pC)  = 0.5 
as L -+ CO. We think this is due to the fact that the cell-to-site RGT used by Ziff is not a 
good RGT in the sense that the transformed system, i.e. a site, cannot represent the original 
system well. In 1161, we considered the ROT from a lattice G I  of linear dimension LI 
to a lattice GI of the linear dimension L2. where L I  z L1. and wrote the RGT equation 
as (8) of the present paper. For sufficiently large values of LI and LZ so that Ep(Gl ,  p )  
and E,(G*, p )  have good scaling behaviour near the critical point, we expect that at the 
critical point pc determined by (8) which is represented as the intersection of two curves 
in figure l(u), Ep(G, p c )  for the free boundary condition will approach f when L -+ 00 as 
Ziff did [14]. The curves of the free boundary conditions in figure l(u) support this idea. 
This also shows that one may get E,(G, p.) = 0.5 from the large cell-to-cell RGT of (8) 
and one need not use the large parameter space RG transformation considered by Aharony 
and Hovi [24]. 

Hu and Chen have used the histogram Monte Carlo simulation method [16,17] to 
calculate the scaling functions of the bond percolation on the square, the honeycomb, the 
Kagome, the plane triangular, the simple cubic, and the body-centred cubic lattices with 
the periodic boundary condition [20,25,26]. The results show that lattices with the same 
space dimensions may not have the same value of Ep at pc ,  e.g. the scaling functions of 
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figures 4(a) and 6(a) of [25] have different values at x = 0, corresponding to the critical 
point pc .  The calculations of scaling functions for the site percolation on various two- 
and three-dimensional lattices with free and periodic boundary conditions also show similar 
results [27]. Using the histogram Monte Carlo simulation method [ 16,171, Hu and Chen 
[28] have found that the scaling functions of percolation problems depends on the ratio of 
the horizontal linear dimension a and vertical linear dimension b of the lattices. Using the 
idea of Langlanda et a1 [29], we may adjust the ratio a/b for various lattices on the same 
space dimensions so that different Lattices give the same value of E,(G, pc ) ,  i.e. F(G, 0). 
We use the histogram Monte Carlo simulation method [16,17] to calculate such alb ratios 
and the scaling functions for various two- to fivedimensional lattices. 

Cardy [23] has used the conformal field theory to calculate exactly the crossing 
probability for bond percolation on rectangles. His results agree very well with the numerical 
results of Langlanda et a1 1291. It is valuable to extend such a study to the site percolation 
problem using the histogram Monte Carlo simulation method [16-18]. 

In summary, the value of E, at pc,  i.e. F(G, 0). depends on the boundary condition and 
the shape of the lattice, and also on the rule used to identify the percolating cluster. The 
histogram Monte Carlo simulation method [ 16,171 is useful for identifying the universality 
classes of E,(G, p E ) ,  which is of much current interest 130.3 11, and for obtaining the scaling 
functions for E, and P, and for calculating the critical point, critical exponents, and the 
thermodynamic order parameter. 

The author thanks Professor B I Halperin for useful discussions and Professor D Stauffer for 
sending reference [31] after the draft of this paper was completed. This work was supported 
by the National Science Council of the Republic of China (Taiwan) under grant no NSC 
83-0208-M001-56Y. The author thanks the Computing Center of Academia Sinica (Taipei), 
the National Center of High-speed Computing in Taiwan and the Condensed Matter Group 
of Harvard University for providing the computing and research facilities. 
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