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Boundary conditions and scaling functions of percolation
models
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Received 2 August 1994

Absfract. 'We use a histogram Monte Carlo simulation method to calculate the scaling functions
of the existence probability Ej and the percolation probability P of the site percolation model
on square lattices with free and periodic boundary conditions, We find that different boundary
conditions give quite different scaling functions near the critical region. However, they give
the consistent critical point, critical exponents, and the thermodynamic order parameter from
renormalization-group calculations, Similar results are found for other percolation models.
The implications of our calculated results for some theoretical problems of current interest
are discussed.

Finite-size scaling is impor'tant in both theoretical [1-5] and experimental [6] studies of
critical phenomena. According to the theory of finite-size scaling [1-5, 7], if the dependence
of a physical quantity @ of a thermodynamic system on the parameter, ¢ which vanishes
at the critical point, may be written as Q{z) ~ ¢* near the critical point, then for a finite
system: of linear dimension L at ¢, the corresponding quantity @(L, 1) may be written as

QL, 1) ~ L™ F(tL*) 1

where y; (v™1) is the thermal scaling power and F(x) (x = :L*) is called a scaling function.
When finite-size scaling is valid, the scaled data Q(L,?)/L™* for different values of L
fall on the same curve, represented by F(x), if they are plotted as a function of the scaling
variable x. Thus, it is important to know the behaviour of the scaling function under
various conditions. In this letter, we briefly report our finding for the effect of boundary
conditions on the scaling functions of percolation problems which have been of much
interest in recent decades [7-15]. Using the histogram Monte Carlo simulation method
developed by Hu [16,17], we calculate the existence probability £}, and the percolation
probability P of the site percolation model on the square lattices with free and periodic
boundary conditions ard with various linear dimensions. For a given boundary condition,
the calculated £, and P have very good scaling behaviour, We find that the scaling
functions for the periodic boundary condition and the free boundary condition are quite
different near the critical region. However, when we apply the large cell-to-cell Monte
Carlo renormalization-group method [16-18] to calculate critical point, critical exponents,
and the thermodynamic order parameter, we find that different boundary conditions give
consistent results. The implications of our calculated results on some theoretical problems
of current interest will be discussed at the end of this letter.
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In the site random percolation model (SRPM) on a d-dimensional lattice G of N sites,
each site of G is occupied with a probability p, where 0 € p < 1. The probability weight
for the appearance of a subgraph G’ of v(G') occupied sites is given by

#(G', p) = P91 = p)V ). @

The cluster which extends from one side of G to the opposite side of G is called a percolating
cluster. The subgraph whose largest cluster is percolating is called a percolating subgraph
and will be denoted by G|,. The subgraph whose largest cluster is not percolating is called
a non-percolating subgraph and will be denoted by G}. The existence probability E,(G, p)
and the percolation probability P{G, p) for the SRPM on G are given by

EfG,p)= ) 7(G}, p) (3)
GrE6

PG, p)= Y (G}, pIN*(GR/N @
GiS6

where Jr(G;,, p) is defined by (2). The sums in (3) and (4) are over all G';, of G; N*(G")
is the total number of lattice sites in the largest cluster of G. The definitions of G, Gy,
and N*(G’) in the present paper are different from the corresponding definitions of [16, 17].
The new definitions allow us to save a lot of computing time and therefore we may do the
calculations for larger systems.

We choose a sequence of site probabilities of increasing magnitudes: 0 < py < p3 <
P3... < py < 1. For a given p;, 1 € j £ w, we generate Ny different subgraphs
G’. The data obtained from wNg different G’ are then used to construct three arrays of
length N with elements Np(v), Ne(v), and Npp(v), 0 < v < N, which are, respectively, the
total numbers of generated percolating subgraphs with v occupied sites, the total number
of generated non-percolating subgraphs with v occupied sites, and the sum of N*(G') over
subgraphs with v occupied sites. In the large number of simulations, we expect that the
total number of percolating subgraphs with v occupied sites, Ny(v), and the total number
of non-percolating subgraphs with v occupied sites, Nys(v), should be proporticnal to N,(v)
and N;(v) with the same proportional constant C(¥), which may be determiped from the
following equation:

CW)Np(v) + Ni(¥)] = Nip() + Ne(v) = €} . )

where CY¥ = N1/(N — v)lvl. The existence probability E, and the percolation probability
P at any value of the site occupation probability p may be calculated from the following
equations:

BGp = 3 p g = 3 50 - e O ©)
pi\v p)= o P P p = ar p P v Np(v) T Nf(-u)
N
PG, py =Y p(1 = pyrcy o) .

Y Np(v) + Ne(w)

We have used (6) and (7) to calculate the existence probability E (G, p) and the
percolation probability P(G, p) of the site random percolation model on the square Iattices
with lingar dimensions L == 32, 64, 128, 256 and 512. We consider brth the free and periodic
boundary conditions. Typical calculated results of E, and P are shown in figures 1(a) and
(b), respectively. For the SRPM on the square lattice, it is generally believed that the exact
y, and y, are Q.75 and 1.8958..., [7], and Ziff [14], respectively, have done extensive
Monte Carlo simulation on a 1024 x 1024 lattice to obtain p, = 0.592746 0 £ 0.000000 5.

v=0
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Figure 1. The calculated resnlts for the site random percolation model on square lattices with
linear dimensions L: 32, 64, 128, 256, and 512, where the (w, Ng) values are {420, 9 x 16%),
{389, 9 x 10%), (369, 9 x 10%), (369, 1.8 x 10°), and (420, 7 x 10%), respectively, for the free
boundary condition. For the periodic boundary condition, 7 % 10* is replaced by 5.6 x 10%.
{2) E, as a function of p. For both (4} and () the broken vertical line intersects the p-axis
at p, = 0.5927460. At p., the lower five full corves are for the free boundary condition and
the upper five dotted curves are for the periodie boundary condition. (¥) P as a function of p.
At p., the lower five full curves are for the free boundary condition and the upper five dotted
curves are for the periodic boundary condition.

Using the exact value of y. [7] and the numerical valee of p. [14], we have plotted
the data for E,(G, p) represented in figure 1(a) as a function of x = (p — pc)L” in
figure 2(a). Since the critical exponent of E, is zero [7], we need not divide E, by
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Figore 2. () The calcnlated Ep for the square lattice as a function of x, where x = (p—pc) L.
The function is the scaling function F(G, x}. {b) The calculated £/L~#* for the square lattice
as a function of x, where x = (p — pc)L™%. The function is the sealing function S(G, x).

the factor L%, to obtain the scaling function for E,, which is denoted by F(G, x). Itis
cbvious that F(G, 0) = Ep(G, p.). Using the same values of y; and p., we have also plotted
P(G, p, g)/L~F» for P(G, p) presented in figure 1(b) as a function of x = (p — pc)L™ in
figure 2(b). The scaling function for P(G, p} is denoted by S(G, x).

Figures 2(z) and (b) show that E, and P have nice finite-size scaling behaviour.
However, the scaling functions for the periodic and the free boundary conditions are quite
different. As L approaches very large values, F(G, 0) which equals E,(G, p.) approaches
0.5 for the free boundary condition and approaches 0.93 for the periodic boundary condition,
The value 0.5 is consistent with the result of conformal field theory [14,23].
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In the previous calculations, a cluster is percolating if it percolates in a given direction,
i.e. from top to bottom. We have also studied the case where a cluster is percolating only if
it percolates in two directions, i.e. from top to bottom and from left to right [19]. We have
found that such a definition gives different scaling functions. For the periodic boundary
condition and the free boundary conditions, F(G, 0), i.e. Ey(G, p.), equals 0.89 and 0.33,
respectively, which are smaller than the corresponding values for one direction percolation.

The percolation renormalization-group (PRG) transformation from lattice G; of linear
dimension L) to lattice G5 of linear dimension L, where Ly > Lg, is given by the equation
[16,17]

Ep(Ga, p) = Ep(G1, p) ®

which gives the renormalized site probability p’ as a function of p. The fixed point of (8)
gives the critical point p.. The thermal scaling power y; and the field scaling power y,
which is equal to the fractal dimension D of the percolating cluster at p; [8,20], may be
obtained from the equations

1 In@dp'/ap), _ p_ PG}, pLY/PGh pILY)
y M Thagy " In(L1/L2)

We have used the above equations to calculate the critical point p, the thermal scaling
power ¥, and the field scaling power y, for the SRPM on the square lattice. For the free
boundary condition, we use w = 420 and Ng = 70000 for L; = 512, and w = 369 and
Ng = 180000 for L, = 256 to obtain p.(sq) = 0.592(8), y, = 0.7(5), and y, = 1.89(3).
For the periodic boundary condition, we use w = 420 and Ng = 56000 for L; =512, and
w = 369 and Np = 180000 for L, = 256 to obtain p.(sq) = 0.592(8), y; = 0.7(5), and
¥n = 1.89(6). The two results are consistent. Qur numerical results are very close to the
exact results [7] or the numerical results of Ziff [14].

With each site of the lattice we may associate an adimensional ‘magnetic moment’
my and consider the renormalization of mg under the PRG transformation to give the
renormalized ‘magnetic moment’ my, [21,22]

moP(Ga, P, q)L3 = moP(Gy, p, q)L§ (10)

which means that the total ‘magnetization’ is preserved after the PRG transformation. Aftera
series of PRG transformations, we have a series of renormalized site probability p, p™N (= p"),

2 (n) : . W 7 (n)
P9, ..., p'* and the renormalized magnetic moments mo, My (= my), mg , ..., mgy .
The thermodynamic percolation probability of the original systems, Py, (p), may be related
to the thermodynamic percolation probability of the nth transformed system, Po.(p™), by

the equation

©

(n)

m
PoolP} = 3o Poo(P™) (11)

for p > p. with A = L/L,. In the traditional small-cell RG transformation (rRGT) [21, 22],
one iterates the RGTs until p approaches the ‘lower-temperature’ fixed point p, = 1 then
Poo(p™) of (11) is given by 1. However, in the large cell-to-cell RGTs considered here,
one need only iterate the RGTs until the correlation length of the nth transformed system is
smaller than the linear dimensions of the transformed cell. In such a case, the transformed
cell may well represent the thermodypamic systems and we may use P(Gs, ") to represent
Poo(p™) of (11) and obtain [18]
)

m
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Figure 3. The calculated thermodynamic order parameters Poo(G, p) of the site random
percolation model on the square Iattice. The full and dotted curves are for the free and periodic
boundary conditions, respectively.

We have used (12) to calculate the thermodynamic order parameter Py, for the SRPM
with the free and periodic boundary conditions, which are shown by full and dotted curves
in figure 3, respectively. The two calculated results are consistent.

From our calculated results, we may discuss some theoretical problems of cumrent
interest. Ziff [14] called the existence probability E, in our papers [16, 17,20] the spanning
probability and denoted it by Rp(p). In a recent letter [14], Ziff used extensive Monte
Carlo simulations to study Ry (p) for a site random percolation model on a square lattice
with the free boundary conditon. He found that Ry (p) — 1 as L — oo in agreement with
Cardy’s recent result [23] but not with renormalization-group (RG) theory, He pointed out
that the RG transformation (RGT) p' = Ry (p) cannot give the expected result Ry(p:) = 0.5
as L — oco. We think this is due to the fact that the cell-fo-site RGT used by Ziff is not a
good RGT in the sense that the transformed system, i.e. a site, cannot represent the original
system well. In [16], we considered the RGT from a lattice G, of linear dimension L,
to a lattice G of the linear dimension Ly, where L) > La, and wrote the RGT equation
as (8) of the present paper. For sufficienily large values of L and L so that E, (G, p)
and Ey(Go, p) have good scaling behaviour near the critical point, we expect that at the
critical point p. determined by (8) which is represented as the intersection of two curves
in figure 1(a), Ex(G, pc) for the free boundary condition will approach % when L = o0 as
Ziff did {14]. The curves of the free boundary conditions in figure 1(a} support this idea.
This also shows that one may get Ep(G, pc) = 0.5 from the large cell-to-cell RGT of (8)
and one need not use the large parameter space RG transformation considered by Aharony
and Hovi [24].

Hu and Chen have used the histogram Monte Carlo simulation method [16,17] to
calculate the scaling functions of the bond percolation on the square, the honeycomb, the
Kagome, the plane triangular, the simple cubic, and the body-centred cubic lattices with
the periodic boundary condition [20,25,26]. The results show that lattices with the same
space dimensions may not have the same value of E, at p., e.g. the scaling functions of
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figures 4(a) and 6(a) of [25] have different values at x = 0, corresponding to the critical
point p.. The calculations of scaling functions for the site percolation on various two-
and three-dimensional lattices with free and periodic boundary conditions also show similar
results [27]. Using the histogram Monte Carlo simulation method [16, 17], Hua and Chen
[28] have found that the scaling functions of percolation problems depends on the ratio of
the horizontal linear dimension a and vertical linear dimension b of the lattices. Using the
idea of Langlanda et al [29], we may adjust the ratio a/b for various lattices on the same
space dimensions so that different lattices give the same value of Ep(G, pc), ie. F(G,0).
We use the histogram Monte Carlo simulation method [16, 17} to calculate such a/b ratios
and the scaling functions for various two- to five-dimensional lattices.

Cardy [23] has used the conformal field theory to calculate exactly the crossing
probability for bond percolation on rectangles. His results agree very well with the numerical
results of Langlanda et af [29]. It is valuable to extend such a study to the site percolation
problem using the histogram Monte Carlo simulation method [16-18].

In summary, the value of £, at p, i.e. F(G, 0), depends on the boundary condition and
the shape of the lattice, and also on the rule used to identify the percolating cluster. The
histogram Monte Carlo simulation method [16, 17] is useful for identifying the universality
classes of Ep(G, p.), which is of much current interest [30, 31], and for obtaining the scaling
functions for E; and P, and for calculating the critical point, critical exponents, and the
thermodynamic order parameter.

The author thanks Professor B I Halperin for useful discussions and Professor D Stauffer for
sending reference [31] after the draft of this paper was completed. This work was supported
by the National Science Council of the Republic of China (Taiwan) under grant no NSC
83-0208-M001-56Y. The author thanks the Computing Center of Academia Sinica (Taipei},
the National Center of High-speed Computing in Taiwan and the Condensed Matter Group
of Harvard University for providing the computing and research facilities.
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